

innovations for high performance microelectronics

METHODS OF DESIGNING ANALOG-TO-DIGITAL CONVERTERS

Master's Thesis Presentation

Author:

Olena Shvaichenko

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

www.ihp-microelectronics.com

© 2011 - All rights reserved

1

2

innovations for high performance microelectronics

The purpose is to investigate the design of 14-bit resolution ADC with sampling frequency 2 MHz in 0.13 um technology.

Comparison table

Architecture	Speed	Conversion time	Resolution	Area	Power consumption	
Flash ADC	High	Constant	Low (up till 8 bits)	Increases exponentially with resolution	Very high	F
Pipelined ADC	Medium -high	Increases with resolution	Medium- high (up till 12-bits)	Increases linearly with resolution	Medium	I
Sigma-Delta ADC	Medium	Trade off with resolution	High (up till 24-bits)	Constant; no change with increase in resolution	Medium-low	-
SAR ADC	Medium -low	Increases with resolution	High (up till 18-bits)	Increases linearly with resolution	Medium-low	

innovations for high <u>performance</u> micro<mark>e</mark>lectronics

Spec Resolution •14 bit Frequency • 2 MHz Technology • SG13S Power supply •1.2 V

Successive approximation ADC

innovations for high <u>performance</u> microelectronics

Advantages

- •Low power consumption,
- Low circuit complexity
- •Mostly digital circuitry.

Limitations

- •Lower sampling rates
- Accuracy of the system
- depends of the accuracy of the

DAC and the comparator.

Successive approximation ADC

Mathematical model

Modeling of Capacitor array mismatch effect

Pelgrom's Law :

 K_p - is matching parameter

$C = 2^{i-1}C_{i}$

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

innovations for high performance microelectronics

Common centroid structure

Simulation results of modeling Capacitor array mismatch effect

innovations for high performance microelectronics

Mismatch \rightarrow Cu = 6.5 fF

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

www.ihp-microelectronics.com

10

innovations for high performance microelectronics

Modeling of Settling time effect

Sampling frequency \rightarrow Switches sizing.

www.ihp-microelectronics.com

2.5

3

3.5

X: 2.167

Y: 83.43

2

Behavioural model

Differential triple reference charge-redistribution SAR ADC with monotonic switching procedure

SAR Logic

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

www.ihp-microelectronics.com

© 2011 - All rights reserved

Behavioural model test bench

s

Simulation results of behavioral model

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

www.ihp-microelectronics.com

© 2011 - All rights reserved

Simulation results of behavioral model

innovations for high performance microelectronics

- dB20(dft((v("/vout" ?result "tran-tran") - average(v("/vout" ?result "tran-tran"))) 6.25e-07 6.462...

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

www.ihp-microelectronics.com

© 2011 - All rights reserved

Transistor level model

Comparator architecture

Preamp Latch Output buffer

Comparator schematic

Simulation results

Input and output waveforms

Transient Response

Conclusion

performance microelectronics

✓ Analysis of ADC architectures was done.

✓ SAR architecture was chosen as most appropriate architecture to meet given specification.

✓ Development of program for modeling successive-approximation analog-to-digital conversion in MATLAB was done.

✓ Analysis of non-ideal effects in SAR ADC was done.

✓ Modeling of mismatch, input referred dc offset and settling time effects was done.

✓ Simulation of modeling mismatch effect shows that for SG013S IHP technology it is possible to get DNL ≤ 0.5 LSB, INL < 0.5 LSB, THD = -95.07 dB, SFDR = 85.75 dB, SINAD = 84.84 dB, ENOB = 13.8 bit with probability 99.7%.

✓ Simulation of modeling comparator offset voltage effect shows that for SG013S IHP technology with 3.2 mV input referred dc offset it is possible to get THD = -84.33 dB, SFDR = 76.10 dB, SINAD = 74.95 dB, ENOB = 12.16 bit with probability 99.7%.

19

Conclusion

20

innovations for high <u>performance</u> microelectronics

✓ Simulation of modeling settling time effect shows that for SG013S
 IHP technology with 2.1 ns time constant it is possible to get
 SFDR = 83.97 dB, SINAD =83.7 dB, ENOB = 13.61 bit with probability 99.7%.

✓ Verilog–A behavioral model of 14-bit differential charge–redistribution SAR ADC with monotonic switching procedure was developed.

✓ Simulation of proposed high-speed comparator with resolution 40uV, clock frequency 100 MHz, supply voltage 1.2 V in SG013S IHP technology was done.

✓ Analysis of more than 45 scientific sources up to 2011 year in the field of analog-todigital conversion has been conducted.

Results of investigation have been published at the International conference on system analysis and information technologies.

The investigation was carried out for IHP - Innovations for High Performance Microelectronics company.

innovations for high performance microelectronics

Thank You!!!

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

www.ihp-microelectronics.com

© 2011 - All rights reserved

General concept in designing ADC

Design flow for ADC

- Mathematical model
 - Algorithm is examined
 - Functional description

Behavioural model

- Architecture is verified
- Behavioural description of the blocks
- Transistor level model
 - Schematic is verified
 - Transistor level of the blocks
- Layout level

Abstract model in Matlab, C/C++

Verilog/VHDL model of the digital part; Verilog-A/VHDL- AMS model for the analog

Synthesis to get gate level Verilog or VHDL

Schematic design of the analog

Mixed verification

Analog layout

Place&Rout of the digital

Post-layout simulation

Modeling of Capacitor array mismatch effect

If standard deviation of unit capacitance is defined as

 $s_{C_1} = s\left(\frac{\Delta C_1}{C_1}\right) = \frac{K_p}{\sqrt{W_1 L_1}}$ $s(\Delta C_1) = C_1 s_{C_1}$

innovations for high <u>performance</u> microelectronics

 $S(\Delta C_1) = C_1 S_{C_1}$ The next capacitor will be parallel connection of 2 unit capacitor and it's mismatch will be the sum of unit capacitor mismatches. Since this mismatches are independent random variables with Gaussian distributions, the standard deviations can be related as follows.

$$s(\Delta C_2) = \sqrt{\left(C_1 s_{C_1}\right)^2 + \left(C_1 s_{C_1}\right)^2} = C_1 s_{C_1} \sqrt{2}$$
$$s_{C_2} = s\left(\frac{\Delta C_2}{C_2}\right) = \frac{C_1 s_{C_1} \sqrt{2}}{C_2} = \frac{C_1 s_{C_1} \sqrt{2}}{2C_1} = \frac{s_{C_1}}{\sqrt{2}}$$

Thus for

$$C_i = 2^{i-1}C_1$$

$$s_{C_i} = \frac{s_{C_1}}{\sqrt{2^{i-1}}}$$

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

Simulation results of modeling Settling time effect

Waveforms of conventional and monotonic switching procedure

Waveforms of conventional and monotonic switching procedure

innovations for high performance microelectronics

Waveform of conventional switching procedure

Waveform of monotonic switching procedure

Reduces Switching power in a factor of 5

Preamplifiers

107 108

109 1010

1010

innovations for high performance microelectronics

Preamplifier with diode connected pMOS load and it's gain

Preamplifier with resistor load and it's gain

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany Elena Shvaichenko

Modified Bult's preamplifier and it's gain

Song's preamplifier and it's gain

Transistor level model

Preamplifier

Bandwidth, Hz **Amplifier architecture** Gain, dB Differential pair with resistive load 13.88 565.7 Differential pair with pmos diode 4.86 465.2 connected load 20.13 Modified Built's preamplifier 201.320.42 178.1 Song's preamplifier

Transistor level model

Dynamic latch

Advantages

ero dc current in reset mode, ull logic levels after generation, outputs are both reset to supply oltage so they are well defined

innovations

for high performance microelectronics

